3) Nilpotent cone

- Def: xesln is nilpotent if it acts nilpotently on every f.d. sln-module. - This is equivalent to being a nilpotent matrix. - Def: the nilpotent cone NG5ln is the subvariety of nilpotent elements. - E_X : for Bl_2 , $W = \{(a,b)\} \in Sl_2 \mid ad-bc=0\}$ 0 - This is always a singular variety, with one singular point at 0. - The SLN-orbits are just conjugacy classes of nilpotent matrices. By Jordan form, this is just partitions of n. SSLN-orbits Z ~> & partitions of n3_ - Where have we seen this before?

4) Some structure theory

4) Springer resolution
- Consider the incidence variety

$$\widehat{N} := \widehat{Z} (x,b) \in N \times G/B | x \in b \widehat{Z}.$$

- This is a smooth variety.
- Note that $N \cap b = \pi$, strictly upper triangular.
- So $\widehat{N} = G \times^B \pi$.
- But $\pi \simeq b^+$ after using killing form $\widehat{g} \xrightarrow{\sim} g^*$.
- So $\widehat{N} \cong G \times^B b^+ \simeq T^* G/B$. Cor: \widehat{N} is smooth.
(cotangent spaces varies with point)
- \widehat{N} comes with two natural projections:
 $N \xleftarrow{\sim} \widehat{N} \xrightarrow{\sim} G/B$.
- The second map $\pi : \widehat{N} \longrightarrow G/B$.
- The second map $\pi : \widehat{T}^* G/B \longrightarrow G/B$.
- The first map is the moment map $T^*G/B \longrightarrow g^*$
arising from the G-action on T^*G/B .